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Abstract

For nearly 100 years, electronic bee counters have been developed using various

technologies to track the foraging activity of mostly honey bee colonies. These coun-

ters should enable remote monitoring of the hives without disturbing natural flight

behaviour while generating precise scientific data. However, there are few counters

on the market that are able to fulfil this task. One main challenge is the lack of

standardised methods to validate a counter's precision, as validation is crucial to cate-

gorise and judge the data produced by the counter, especially for scientific purposes.

Another challenge is the interpretation of flight data to measure the effects of envi-

ronmental or anthropogenic sources. Nevertheless, recent developments in the field

are promising. This review describes the historic development of automated bee

flight measurements and critically compares validation methods to encourage their

improvement. To increase the comparability of future analyses of bee counters,

current advances in data interpretation are also presented.
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1 | INTRODUCTION

In 1925, the world's first electronic bee counter was described by

Lundie (1925). Since then, many devices have been developed,

employing the state-of-the-art technology of the time they were

assembled. The technology used in the very first models was clearly

dominated by a combination of mechanical parts and electrical cir-

cuits. As technology advanced, different sensor types were used to

improve the seemingly simple process of counting incoming and out-

going bees from a hive. Although there are a variety of devices, the

measuring technology can be narrowed down to five major technolog-

ical fields. Recently, a trend can be seen regarding the utilisation of

certain technologies. Optical sensors have dominated the field for

more than 40 years. However, within the last decade, the number of

video-based counters has rapidly increased (Figure 1).

I will show that every new generation of devices came with new

challenges and limitations; some have remained from day one, and

others have recently emerged from new insights. Currently, no com-

mercial counter is available that would be sufficient for scientific

needs considering the precision and reliability required for use in

field-scale experiments or long-term monitoring of honey bee

colonies.

One reason for this is the lack of standardised methods for deter-

mining the precision of a bee counter. However, such a method is

essential for the comparability of the counts and, more importantly,

for the correct interpretation of the overall data. To date, 63% of the

scientific articles included in this work do not provide the precision of

their counter or a validation method. Of the articles that state the pre-

cision, 17% do not provide the method used to validate the device.

Notably, most articles lacking a reference to validation were published
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before 2000. Nevertheless, the lack of validation and corresponding

methods remains a major gap that needs to be addressed in the future

development of such counters (a) for comparability and (b) to provide

a solid baseline for justification of data interpretation. Correct data

interpretation is key for the usage of such counters for bee-related

ecological, biological, or ecotoxicological research. For example, cur-

rently, there is the hope that loss of forager bees because of pesticide

applications could be a useful endpoint of regulatory risk assessment,

but this would require that the uncertainty of the forager counts be as

low as possible to precisely indicate the background mortality. It is

therefore critical to connect hardware and software engineering with

beekeeping and bee biology to form a proper baseline for the creation

of precise counters.

The current development of bee counters can be seen as a pro-

cess that is still affected by, and can learn from, past experiences. This

review presents the major steps during historical development and

highlights the main technologies on which the different counters are

based, as well as their strengths and weaknesses. An overview of the

areas in which bee counters can be used is also presented. The cur-

rent methods for counter validation are critically compared to give

new momentum for improvement. Last, this work compiles indices

that focus on simple data interpretation from any bee counter that

measures incoming and outgoing bee traffic and discusses their

meaningfulness.

A review of the scientific and grey literature was conducted

between October 2020 and May 2021 using a variety of approaches

described in the supplemental material (see Supplementary Table 1.

Data Collection).

1.1 | Field of use

The general field of use of electronic bee counters can be divided into

two main areas: (a) scientific application and (b) precision beekeeping,

but with several crossover interests. The first area includes the basic

drive to develop such a counter, which will become clear in the subse-

quent sections of historical development in this review.

From the very beginning, scientific applications included the flight

behaviour of honey bees, for example, to find a measure for colony

productivity (Lundie, 1925; Marceau, Boily, & Perron, 1990) or spe-

cific traits among different bee races (Danka & Beaman, 2007). With

an automated counting device, the operator can conclude the food

availability, food requirements and age structure of a bee colony

(reviewed in Meikle & Holst, 2015) and can provide valuable insights

into other behavioural traits, such as swarming, colony defence, or

robbing.

In addition, the spread of pests can be studied in previously

impossible detail. Optical counters can register individual Varroa mites

on bees. With this capability, dispersal routes can be better investi-

gated, and the reinvasion behaviour of Varroa destructor can be

described in detail (Chazette, Becker, & Szczerbicka, 2016; Bjerge

et al., 2019; Bilik et al., 2021).

Another important scientific application is in ecotoxicology. The

standard use of dead bee traps to record daily losses of bees through-

out an entire season is cumbersome and fraught with pitfalls (Accorti,

Luti, & Tarducci, 1991). Over longer time periods, bees become accus-

tomed to the traps and empty them, making an accurate count of

dead bees impossible. An automatic counter can record the balances

of daily bee flight (Struye, 1999) and is particularly useful for visualising

the effects of pest control applications in the field. Under field condi-

tions, the direct acute effects can be inferred from flight behaviour

(Struye et al., 1994; reviewed in Pham-Delègue, Decourtye, Kaiser, &

Devillers, 2002) as well as the sublethal effects over time (Ngo

et al., 2019; reviewed in Meikle & Holst, 2015).

For the second and more applied use of bee counters, beekeepers

could benefit from extrapolating the previously mentioned character-

istics of counter data. Combined monitoring parameters at the colony

level, such as temperature, humidity, weight, acoustics and flight

activity, are the core data of precision beekeeping (reviewed in

Zacepins, Brusbardis, Meitalovs, & Stalidzans, 2015).

Incorporated into a wireless sensor network (WSN), data collec-

tion can be automated at a high level, and beekeepers would be able

to see any relevant development of their colonies without having to

manually inspect the hives (Hong et al., 2020; Jiang et al., 2016).

The benefits of remote prediction of swarm events include

inspecting hives only when needed rather than regularly (Aumann

et al., 2021). Furthermore, the data collected can indicate when honey

flow stops and colonies need to be relocated or fed to maintain health

or being able to find sites with higher honey yields (Wakjira

et al., 2021). Doing so minimises the beekeeper's resource use and

maximises hive productivity (Catania & Vallone, 2020). This could be

particularly beneficial for beekeepers in emerging and developing

countries, where significant profit maximisation would help generate

F IGURE 1 Published scientific articles included in this review
that describe or use bee counters, categorised by their source
technology and plotted by publication date. Each circle represents
the year where a new bee counter was introduced or described in
an article (total number of articles n = 38, see Table 1). Optical
sensors have dominated the field for more than 40 years.
However, within the last decade, there has been a rapid increase in
video-based counters
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income and combat unemployment. Ultimately, this could lead to

improved protection of the environment and an increased quality of

life and higher living standards in these countries (Gratzer, Susilo,

Purnomo, Fiedler, & Brodschneider, 2019; Gratzer, Wakjira, Fiedler, &

Brodschneider, 2021).

2 | COUNTER TECHNOLOGIES

2.1 | Mechanoelectrical

Historically, the first electronic bee counter described in the literature

dates back almost 100 years to the work of Lundie, who started his

experiments in 1922. He utilised small portals where bees had to pass

through a tunnel on which end a balance arm was attached. The bal-

ance was adjusted to let the bodyweight of the bee trigger the arm,

resulting in electrical contact forwarding the impulse to a counter

(Figure 2). Thirty of these portals were combined in one hive unit—15

for the incoming and 15 for the outgoing traffic of forager bees

arranged about each other. Each portal was connected to a telephone

message register (counter) that read the total impulses hourly

(Lundie, 1925).

Adapting the principle of this apparatus, Fabergé introduced a

device claiming to have overcome some of Lundie's issues. He

implemented a system in which all impulses from one set of portals

fed into only one counter, yielding a graph of exits and a graph of

entrances that could be printed simultaneously on the same sheet of

paper (Fabergé, 1943).

Lundie (1925) considered 12 factors that introduced errors in the

count in his work. The majority of these factors were caused by the

complexity of the mechanics and the resulting high maintenance

required. Freeing the counter's parts from bee debris and fixing

mechanical issues required an almost daily cleaning interval.

Although Fabergé (1943) improved the design in terms of record-

ing, no other mechanoelectrical counters were described besides

these two. Lundie's apparatus functioned for a whole season and gave

valuable data, as he also recorded the hive weight and environmental

factors such as the temperature and daily sunshine hours. Both coun-

ters were the only affordable way to establish an electronic counter,

as the photoelectronic technique was very expensive at that time

(Brittain, 1935).

The latest approach to implement a mechanoelectrical design was

published by Liu et al. (1990) in a preliminary test. They considered

microswitches as counting units to generate electric impulses when-

ever a bee walked over the trigger, that is, when the bodyweight

would push it down. However, they rejected this idea because this

technique could injure or handicap the bee passing through.

The counter proposed by Chauvin is notable although it is only

mechanical and not mechanoelectrical (Chauvin, 1976). He con-

structed a movable cylinder through which the bees had to pass when

leaving the hive. The cylinder was connected to a recording pen that

registered the traffic on a paper roll. Parts of the device were treated

with a repellent to guide bee traffic as favoured by the author. It was

stated that a continuous operation for 4 months was possible.

Although practically interesting with a simple setup, technically saving

data on paper in a field trial does not provide enough safety for data

loss, and the mechanical approach was not applied in future devices.

2.2 | Sensor-based

After Lundie introduced a mechanoelectrical counter, the subsequent

generations of devices focused on sensor technology fuelled by the

invention and availability of cheap photocell and later light-emitting

diode (LED) and transistor technology. For over 20 years throughout

the 70s, 80s and 90s, photocells were predominantly used (Figure 1).

When imaging technology became available in the last two decades,

the focus turned from LED advanced optical sensors to video-based

systems, most recently enhanced by machine learning algorithms.

2.2.1 | Optical sensors

Photoelectric

In optoelectronics, a light barrier is a system that detects the interrup-

tion of a light beam and displays it as an electrical signal. In this way,

automatic devices can detect moving objects without contact. Exam-

ples include obstacle detection for automatically closing doors and

intruder detection through alarm systems. Light barriers consist of a

light beam source, the transmitter or emitter, and a sensor, the

receiver for the radiation (ELOVIS, 2021).

The first device with this technique was introduced by Brittain in

1935. His design and other early attempts used a simple photocell or

light-dependent resistor (Erickson et al., 1975; Kerfoot, 1966;

Spangler, 1969). Restricted by pricey components (up to 100 USD at

the time), the design implemented only one gate that counted, assum-

ing it to be a representative sample of the whole bee traffic. Other

solutions implemented only small colonies on a single frame or a few
F IGURE 2 A single portal for incoming or outgoing bees from
Lundie's first mechanoelectrical bee counter (Lundie, 1925)
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frames and did not provide measurement of a full colony (Erickson

et al., 1975). This was seen as a compromise until a solution for com-

plete flight traffic was available.

In these designs, different, rather unreliable, and/or unfavourable

light sources were used as transmitters. Even daylight was used as a

light source, which has the huge disadvantage of being inconsistent

and massively dependent on the environment. Continuous function of

the device cannot be maintained (Kerfoot, 1966; Spangler, 1969).

Using a simple light bulb as a light source provides more consistency

but introduces two major biases: (a) the heat generated by the lamp

may affect the bee's movement and behaviour, and (b) emitted visible

light may act as an obstruction alone or in combination with the heat,

especially at dawn or night. An additional factor is the durability of

such analogue components.

Although some experimenters have suggested addressing light

source issues by using red light (Erickson et al., 1975), limitations

because of the use of only one photocell per counting corridor reveal

further disadvantages. Devices needed a separator that split up

incoming and outgoing bees to count them accordingly, especially

when there was much traffic that came with the honey flow and

stronger colonies. Spangler (1969) tried to guide bee traffic with a

specially designed ‘maze’, separating incoming bees from outgoing

bees (Figure 3). This study described a rather complex system for how

bees could enter and leave without crossing and be double-counted

by walking forth and back or counted as one by two bees walking

closely together (Struye et al., 1994).

This ‘maze’ was criticised to restrict or slow down normal activity

at the hive entrance (Erickson et al., 1975). Another method to

improve the separation of incoming and outgoing bees was the imple-

mentation of airflow to the system. Erickson et al. (1975) installed

separate entrance and exit tubes with counters. In addition, they

installed a fan on top of the hive body that resulted in an intake of

fresh air at the exit tubes and a low airflow out through the entrance

tubes. However, this technique was not adopted and was further

enhanced by others.

With the rapid progress in semiconductor fabrication in the

1960s, new technology became affordable, and Buckley et al. (1978)

were the first to use a phototransistor instead of a simple photocell in

a full hive setup. This affordable LED technology has been widely

used in sensor-based bee counters.

Infrared

By using LED technology, most of the described disadvantages of the

light source disappeared, and the first commercially successful bee

counter was developed in the 90s by Struye, Borremans, and

Jacobs (1991). With LEDs and modern computer technology for data

recording, it was possible to use more than one light barrier that bees

had to cross while entering or leaving the hive. This made it possible

to detect the movement direction of bees and use only one passage-

way for entries and exits, making the aforementioned constructions

to separate bee traffic obsolete. Because of their compact size

(Figure 4), it was also much easier to implement more than one pas-

sage, which is very important to maintain a certain flow of bees during

times of high-frequency forager passing (Liu et al., 1990).

Although this advanced technology overcame problems from the

past, new difficulties appeared very soon. As most counters were

tested with hives of low strength, testing full-sized colonies revealed

serious new difficulties. At times of high honey flow where several

bees enter the corridors one after another at a high frequency, cou-

nting errors occurred (Struye et al., 1994). Similar issues appeared

from bees changing directions in the corridors or bees aggregating in

front of the hive entrance because of high temperatures in the sum-

mer or lack of space in the brood chamber (Danka & Beaman, 2007;

Souza Cunha et al., 2020).

Several authors highlighted the importance of not interfering with

the normal behaviour of bees in any way to collect legitimate and

unbiased data (Chen et al., 2012; Erickson et al., 1975; Fabergé, 1943;

Rickli et al., 1989; Struye et al., 1991). Struye et al. (1991) postulated

the following requirements for a ‘stand-alone continuous monitoring

F IGURE 3 Top view of the bee counter. (a) Tube leading from
the hive; (b) tube leading to outside; (c) outgoing counter tube;
(d) incoming counter tube; (e) ledge leading to the outgoing tube; (f)
ledge leading to the incoming tube; (g) light beam hole; (h) phone jack
connecting to photocell [From Spangler (1969)]

F IGURE 4 Basic setup of an optical sensor in a counting unit
utilised in a bee corridor. Usually, two of these sensors are
implemented per corridor to track the direction of movement of
the bee [After Pešovi�c et al. (2017)]
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field device’: (a) monitoring of all colony sizes, (b) no influence on

normal bee behaviour, (c) ventilation and orientation should not be

compromised, (d) completely autonomous functioning under field

conditions, (e) user-friendly and low-maintenance construction, (f)

affordable enough to monitor more than one colony and (g) low

energy consumption to allow for continuous operation. These

requirements still apply today.

Struye et al. (1994) were also the first to clearly state that a key

issue in improving counters lies in the identification and elimination of

erratic bee movement in the channels. They also implemented user-

friendly maintenance automation in which their apparatus (named

‘BeeScan’) brought up an error message when one channel was

blocked (by a dead bee, for example) and there was no registration

because of a lack of activity. Increasing counter accuracy was the aim

of Struye (1999) as well as other authors who suggested improving

precision, that is, by adding more than two sensors per passage

(Pešovi�c et al., 2017). However, no LED counter is described in the lit-

erature that features this suggestion.

Some of the above-described difficulties remain a challenge for

modern counters. Because Struye et al. (1991) postulated their

requirements, little has happened to improve this stage of sensor

technology. Schöne (1996) suggests that the average walking speed

of a worker bee is 20–120 mm s�1, so the bee should break two light

barriers in succession within 50–300 ms (Pešovi�c et al., 2017). Inter-

ruption outside this timeout period is considered incorrect counting,

which could provide the basis for an algorithm to correct data appro-

priately. Further consideration of this suggestion was provided

recently by Pešovi�c et al. (2017), and it could benefit a correction

algorithm that tries to work out so-called borderline cases such as

erratic bee movement between sensors or bees getting stuck there

somehow (Bermig et al., 2020).

In one of the latest developments, infrared optical sensors were

integrated into a WSN. The WSN provides automatic and remote data

tracking that collects input from the connected sensors in real time to

a gateway. This gateway manages data storage and availability to its

users, making it possible to access and inspect the whole system from

around the globe (Jiang et al., 2016). Such a network is not limited to

sensor-based counters and is open for any kind of device providing

relevant input.

Finally, using the infrared light spectrum has the advantage of

being invisible to the bee's eye, which lowers any potential influence

on natural behaviour. Using a noncontact method over a contact

method in sensor technology reduces the possibility of harming bees

when triggering the sensor.

Nevertheless, one major disadvantage of optical sensors should

be highlighted. Debris and other contaminations by outgoing foragers,

particularly returning foragers, make frequent maintenance necessary

to keep the sensors clean and working (Bromenshenk et al., 2015;

Rickli et al., 1989; Struye et al., 1994). Interestingly, it was not men-

tioned how long such a maintenance interval would be. Furthermore,

another obvious disadvantage of optical sensors lies in the registration

precision of bees entering or leaving the hives in batches where sev-

eral bees enter or leave the hive one after another (Liu et al., 1990;

Struye et al., 1994). As described by Struye et al. (1994), algorithms

are necessary to detect and clear data of this issue (see also Bermig

et al., 2020). Another suggestion to solve this problem was to use

capacitive sensors (Campbell et al., 2005; Rickli et al., 1989).

2.2.2 | Capacitive sensors

Although past literature noted the advantages of a capacitive sensor

system to assess the flight activity of bees, few research works have

implemented this technology so far although it is cheap, robust and

quite simple. The bee body, like that of all organisms, consists of a cer-

tain proportion of water. Therefore, it has a dielectric signature that is

detectable by its capacitance measured between two electrodes, the

so-called capacitors (Perrault & Teachman, 2016). Alterations because

of temperature, humidity and debris inside the corridors of the coun-

ter tend to be compensated for by assessing the difference in capaci-

tance, that is, the dielectric constant, between the two capacitors. The

bees' direction of motion can be tracked by the pair of electrodes

responding to a change in capacitance. Its velocity can be calculated

by the time required to walk from one set to the other set of elec-

trodes. Interestingly, the change in capacitance is proportional to the

body size of the bee; larger bees cause a greater change in capaci-

tance (Campbell et al., 2005), which makes it theoretically possible to

differentiate between all three castes of honey bees (Figure 5).

Campbell et al. (2005) tested the sensor with live bee specimens.

A. mellifera and Bombus sp., Andrena sp. and Megachile rotundata were

included in their experiments. They demonstrated that an increase in

bee mass was followed by an increase in voltage. Although there was

an overall linear relationship between those two factors, there was

still significant variability, particularly for the honey bee and Andrena,

making identification of different species difficult.

The authors suggest that the different shapes of the bees may be

the reason for this. Bombus species are generally more robust and

compact, while the Andrena and leafcutter species are longer and thin-

ner. More than 10 years after Campbell's publication, this technology

was adopted by Perrault and Teachman (2016) to create a solitary bee

counter for Osmia sp. with an Arduino single-board microcontroller.

The authors believe that with this technique, it is possible to

F IGURE 5 Typical asymmetric double pulses produced by bees in
a capacitive ring sensor. Pulse (a) is a larger bee exiting the hive, and
pulse (b) is a smaller bee entering the hive [After Campbell
et al. (2005)]
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determine the volume of nesting material and food collected by a sin-

gle bee as well as the type of bee involved. Their sensors detected

fluctuations in capacity caused by bee movements in the nesting tube.

This could allow for evaluation of activity patterns to determine how

long the bees spend outside the nest, how active they are when they

return and how these changes depend on the time of day or other

alterations in environmental conditions that influence their behaviour.

By employing deep learning algorithms over the course of a year, the

authors believe it should be possible to predict how much pollen each

bee has collected and indicate the general health status of the brood.

Therefore, a better understanding of the dynamics of pollinators other

than honey bees could be promoted.

Bermig et al. (2020) describe a system called ‘BeeCheck’ in which

seven capacitive sensors per corridor were implemented with an algo-

rithm that provides a solution to the difficulties described above and

by other authors, such as erratic bee movement in the corridor or

bees coming into contact while moving through the gates (Rickli

et al., 1989; Struye et al., 1994).

They noted that the high variation in the walking speed of bees is

still a challenge. In addition, slow-moving bees or long stays in the cor-

ridor, and bees that are passing each other or running close behind

each other can lead to erroneous measurements. Therefore, an algo-

rithm is required to map the daily balance of incoming and outgoing

bees as accurately as possible, factoring out these variations or bor-

derline cases (Bermig et al., 2020).

In terms of easy-to-apply technology, capacitive sensors seem to

be superior to the technologies introduced thus far. ‘BeeCheck’ can
be maintained with low effort, as no frequent cleaning of the compo-

nents is necessary. It is independently operable for more than

3 months on battery power and exchangeable data memory. The

apparatus is currently improved within the consortium of the ‘VIBee’
project (www.vibee-project.net). However, the limitations of this tech-

nology are similar to those using narrow corridors or entrance tubes,

generating the abovementioned borderline cases. Moreover, ambient

air humidity may affect the dielectric constant of moving objects,

affecting the sensitivity of the counter and ultimately creating false

positives rather than negatives. This could be fixed with waterproof

housing for the counter.

2.2.3 | Electromagnetic sensors

RFID

A counter that records the total bee traffic (i.e., activity) is often

incapable of capturing the foraging behaviour of single bees. How-

ever, some research questions make it necessary to focus on indi-

viduals. To date, direct or video observations have been used in

combination with coloured labels, numbers, or both to differentiate

between the subjects of interest (Odemer, Nilles, Linder, &

Rosenkranz, 2018). As a result of a continuous decrease in the size

and weight of transponders in the last two decades, radio-

frequency identification (RFID) technology has been established for

bee monitoring.

RFID tags allow for automated and continuous monitoring of indi-

vidual bee flight activity 24 hr a day, easily outperforming human

observers (reviewed in Nunes-Silva et al., 2019). The technology inte-

grates two main components: a transponder (a tag combined with an

antenna that is glued on the bee's thorax) and a reader usually

installed at the hive entrance. The antenna emits radio signals at a cer-

tain frequency that activates the tag. The tag then communicates its

stored data, such as an identification number (or ID), to the reader

using a modulated signal. The ID is then recognised along with a

timestamp when the tagged bee was last detected at the entrance

(Tenczar, Lutz, Rao, Goldenfeld, & Robinson, 2014).

Although RFID technology is not designed to measure the full

trafficking of a colony, it has some notable advantages. RFID chips are

designed to be fitted to individuals (workers, drones, queens) to study

the behaviour of a specific cohort of bees (reviewed in Nunes-Silva

et al., 2019). Therefore, it is possible to precisely determine the onset

of flights of freshly hatched bees, flight duration, number of flights, or

homing success.

In addition, both technologies, a whole-hive bee counter and indi-

vidual markers could be combined to increase the resolution of behav-

iour observation at both the colony and individual level. One reason

why this RFID technology is not yet extensively used is the relatively

high price, especially of the tags, which are reusable only by sacrificing

the bee if the tagged individual can be caught after the observation.

Currently, an OECD guideline is under development

(OECD, 2020) where this technology will be used to determine suble-

thal effects in the regulation of plant protection products (i.e., the

homing success of worker bees to measure sublethal effects); more

frequent use of RFID technology and a drop in prices could be

consequences.

RADAR

To date, there have only been two studies using RAdio Detection And

Ranging (RADAR) technology to measure incoming and outgoing bees

from a hive. The beehive activity monitor of Souza Cunha et al. (2020)

consists of a Doppler radar, a signal conditioning amplifier, a micro-

controller for data acquisition and processing, a real-time clock for

time stamping the data, a micro SD card for data storage and a power

management block.

By measuring the total energy output of the Doppler radar at low

frequency, the flight activity of bees can be determined (Figure 6).

This Doppler effect produces velocity data from objects at a distance.

A microwave signal bounces off the target, and a computer analyses

how the motion of the bee has altered the frequency of the returned

signal. This creates a variation that enables direct and highly accurate

measurements of the radial component of a target's velocity relative

to the radar (Souza Cunha et al., 2020).

In Aumann et al. (2021), a similar approach was used to monitor

rather simple activity events of flying honey bees. Swarming, robbing

and orientation flights could be indicated with root-mean-squared

counts, also known as the quadratic mean (Jones, 2018), which corre-

lates with the total power in the Doppler spectrum. This indicates bee

activity without providing exact numbers. Therefore, evaluating the

6 ODEMER
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data and comparing precision with other counters is rather difficult at

this stage of development. Future improvements are currently being

developed. For example, the software can be used to predict radar

cross-sections of flying bees as a precursor to detecting and tracking

them (Alzaabi et al., 2021). Overall, RADAR could be a promising tech-

nology in terms of the low cost, durability and possibility of combina-

tion with sensor- or video-based counters.

2.3 | Imaging/video-based systems

In 1935, Patterson was the first to describe an image-based bee coun-

ter. He illuminated the entrance gates of a bee colony and, by means

of a wide-angle lens, focused the images of 24 gates onto a single

strip of continuously moving 35 mm positive film. A single bee pas-

sage was recorded as an interruption of a solid line; this resulted in

very high labour to count these interruptions, and the running cost of

the film was considerable at the time (approximately 20.3 m film per

minute).

Since then, video-based counters were not considered for a long

time because of technical complexities and costs. They can be seen as a

development of the recent decade (Figure 1; Table 1). Concurrent with

the global increase in available smartphone technology in the late 2000s,

camera lenses implemented in these phones were the result of lower

prices because of the high availability on the world market

(Thusu, 2012). As a side effect, this trend made it possible to develop

affordable video-based devices such as bee counters in the early 2010s.

One of the first models that can be considered a hybrid of video,

optical infrared LEDs, and individual tags was presented by Chen

et al. (2012). They used a camera to record individually marked bees

under infrared light at the hive entrance, automatically registered by

an algorithm. Bees were labelled with a circular character-encoding

tag. To identify these tags in the video, an algorithm (Hough transfor-

mation) was used to detect the presence of the marked bees (Tarsha-

Kurdi, Landes, & Grussenmeyer, 2007). A 12,000-bee strong colony

could be monitored for 15 consecutive days.

This approach combines several advantages of the aforemen-

tioned technologies and can be seen as an alternative to RFID tagging.

Important benefits are the reduced costs compared to RFID transpon-

ders and the range of applications. For instance, bees labelled in this

way can be deployed to study the possible effects of electric fields

such as mobile communications radiation (3G–5G) under field condi-

tions without major interference as expected with an RFID device

that would suffer from EMF radiation. A similar counter was

employed by Dussaubat et al. (2013) to investigate the effects of a

Nosema ceranae infection on the flight behaviour of honey bees.

The device of Chen et al. (2012) was subject to the same limita-

tions as RFID technology (see Section 2.2.3). To date, it has been an

exception to most other video-based counters and has not been

described except in Dussaubat et al. (2013).

The principles of a modern video-based counter usually include

three parts: (a) bee detection; image transformation algorithms are

necessary to make the bee image stand out from the background and

differentiate it from other forms. Methods such as background sub-

traction, shape matching processes, ellipse approximations and hybrid

segmentation using both intensity and depth images can be applied

(Chiron et al., 2013; Ngo et al., 2019). In the second part (b), tracking

bees (targets) by assuming their future positions to determine

whether they are going in or flying out of the hive is accomplished by

different algorithms. The most widely used approaches are Kalman fil-

ters, iterative-Hungarian algorithm tracking (Ngo et al., 2019;

Sahbani & Adiprawita, 2016; Yang, Collins, & Beckerleg, 2018), or 3D

multitarget tracking based on a combined Kalman filter and global

nearest neighbour (Chiron et al., 2013; Konstantinova, Udvarev, &

Semerdjiev, 2003; Magnier et al., 2018; Ngo et al., 2019). Kalman fil-

ters are algorithms that calculate a kind of memory of past measure-

ments and use and continuously update this memory to determine

parameters, for example, the position of an object with high precision

(Zarchan & Musoff, 2015). For instance, such filters are employed in

every satellite navigation device and smartphone. The final part

(c) counts the bees from the results obtained from the first two algo-

rithms. As pictured in Figure 1 and Table 1, the utilisation of such

F IGURE 6 Time–frequency–intensity heat map plot from a 10.5 GHz Doppler radar. The frequencies of forager bees are displayed as vertical
tracks approaching 90–150 Hz with yellow and red banding. Tracks can be seen extending throughout the 12 s timeframe of the recording from
left to right [After Souza Cunha et al. (2020)]
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TABLE 1 Automated bee counting devices that were described in the scientific literature (i.e., in journal articles, preprints, conference
proceedings and theses)

Type Light source Species Validation method Precision Source

Mechanoelectrical n.a. A. mellifera n.a. n.a. Lundie (1925)

n.a. A. mellifera n.a. n.a. Fabergé (1943)

Optical sensor Light bulb A. mellifera n.a. n.a. Brittain (1935)

Daylight Agapostemon texanus n.a. n.a. Kerfoot (1966)

Light bulb A. mellifera n.a. n.a. Spangler (1969)

n.a. A. mellifera n.a. n.a. Burrill and Dietz (1981)

Light bulb A. mellifera n.a. n.a. Erickson, Miller, and

Sikkema (1975)

Daylight A. mellifera n.a. n.a. Buckley, Davies, and

Spindley (1978)

Infrared (LED) A. mellifera Manual counting bees in

front of the hive

97.7% (96.3–99.1%) Marceau, Boily, and

Perron (1988)

Infrared (LED) A. mellifera Liebefeld Method (Imdorf

et al., 1987)

Up to 7.5-fold higher loss

rate than estimated

Rickli et al. (1989)

Infrared (LED) A. mellifera n.a. n.a. Liu, Leonard, and

Feddes (1990)

Red light (LED) A. mellifera Flight cage 99.7–99.8% Struye, Mortier, Arnold,

Miniggio, and

Borneck (1994)

Infrared (LED) A. mellifera Robbers test n.a. Struye (1999)

n.a. A. mellifera n.a. n.a. Bromenshenk (2001)

Infrared (LED) A. mellifera Manual counting bees on

video

84.92% incoming and

85.95% outgoing

Jiang et al. (2016)

Infrared (LED) A. mellifera n.a. n.a. Pešovi�c, RanĎi�c, and

Stamenkovi�c (2017)

Infrared (LED) A. cerana n.a. n.a. Qiuzi et al. (2017)

n.a. A. mellifera n.a. n.a. Clarke and Robert (2018)

Infrared (LED) A. mellifera Manual counting bees on

video images

95.57% incoming and

96.11% outgoing

Son et al. (2019)

Mechanical n.a. A. mellifera n.a. n.a. Chauvin (1976)

Capacitive sensor n.a. Bombus sp.

A. mellifera

Andrena sp.

Megachile rotundata

n.a. 86.80% Campbell, Dahn, and

Ryan (2005)

n.a. Osmia sp. n.a. n.a. Perrault and

Teachman (2016)

n.a. A. mellifera Robbers test and manual

counting bees on video

�95%+ Bermig et al. (2020)

n.a. A. mellifera n.a. n.a. Hong et al. (2020)

Video-based n.a. A. mellifera n.a. n.a. Patterson (1935)

n.a. A. mellifera n.a. 94% Campbell, Mummert, and

Sukthankar (2008)

Infrared (LED) A. mellifera n.a. n.a. Chen, Yang, Jiang, and

Lin (2012)

n.a. A. mellifera n.a. n.a. Chiron, Gomez-Krämer,

and Ménard (2013)

n.a. A. mellifera n.a. 96–97% Dussaubat et al. (2013)

n.a. A. mellifera Manual counting bees on

video images

80.5–85.5% (total bees on

flight board within a

margin of 10 bees)

Kulyukin and Reka (2016)
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algorithms has just started in recent years and was strongly triggered

by affordable video techniques. Therefore, it can be assumed that

development in this sector will most likely have a substantial influence

on future bee counters, especially when combined with deep learning

approaches (see Section 2.3.1).

However, as promising as it may be, the technique has some

notable limitations. As with photography, every video-based system

inevitably depends on the lighting conditions. In an outside setting,

these conditions can vary significantly with the time of day, season

and weather (Campbell et al., 2008).

Counters without an additional light source are dependent on sun-

light, which is not permanently available 24 hr a day. This makes contin-

uous recording of traffic difficult. Introducing a light source other than

the infrared spectrum can cause behavioural alterations of foragers and

nest bees, which reflect a major disturbance to the natural habits of a

colony. Moreover, to cover the whole flight area in front of a hive from

a short distance when mounted near the entrance, wide-angle lenses

are typically used. From early on, such imaging systems encountered

issues with false-negative registration of bees at the edges of the frame

because of optical restrictions and distortions of the lens. False posi-

tives occur when bees fly toward the camera and appear larger than

usual, generating multiple detections, or by occasional shades, leaves,

or blades of grass wrongly counted as bees. Complex areas such as a

crowded flight board can also cause false-positive events (Campbell

et al., 2008; Chiron et al., 2013; Kulyukin & Reka, 2016).

Moreover, as expected with any tracker algorithm, the efficiency

decreases as the number of targets increases (Chiron et al., 2013).

Honey bee colonies tend to strongly vary in flight traffic depending

on the available food sources, health status and weather conditions

(reviewed in Marchal et al., 2020). To evaluate counters of any type,

ground truth or empirical evidence needs to be obtained by a refer-

ence device with a known precision or by human evaluators. Both can

be troubled by very high densities of honey bees, where one cannot

reliably measure in–out activity, as bees are almost impossible to sep-

arate visually. To improve the process, stronger algorithms and better

image quality might solve some of the problems, as suggested in

Magnier et al. (2018). Last, video data generate large amounts of disk

space that cannot easily be transferred from storage to the user

online. When future high-speed 5G networks are more commonly

accessible, this issue should be overcome.

2.3.1 | AI-based systems and deep learning

Artificial intelligence (AI) is a branch of computer science focused

on algorithms that mimic intelligent learning and problem solving.

TABLE 1 (Continued)

Type Light source Species Validation method Precision Source

n.a. A. mellifera Manual counting bees on

video images

95.3% incoming and 88.8%

outgoing

Tu, Hansen, Kryger, and

Ahrendt (2016)

n.a. A. mellifera Manual counting bees on

video images

94–99% (total bees on flight

board within a margin of

10–15 bees)

Kulyukin (2017)

n.a. A. mellifera n.a. n.a. Tashakkori, Hernandez,

Ghadiri, Ratzloff, and

Crawford (2017)

n.a. A. mellifera Manual counting bees on

video images

75% Magnier, Ekszterowicz,

Laurent, Rival, and

Pfister (2018)

n.a. A. mellifera Manual counting bees on

video images

93.9% Ngo, Wu, Yang, and

Lin (2019)

n.a. A. mellifera n.a. n.a. Tausch, Schmidt, and

Diehl (2020)

n.a. A. mellifera Manual counting bees on

video images

97.5% (82.4–100%) Kulyukin, Mukherjee,

Minichiello, and

Truscott (2021)*

RADAR n.a. A. mellifera Manual counting bees in

front of the hive/BeeScan

(Struye, 1999)

76.6% visual, 70.3–76.3%
BeeScan

Souza Cunha et al.

(2020)

n.a. A. mellifera n.a. n.a. Aumann, Aumann, and

Emanetoglu (2021)

Note: An online search was conducted using Google Scholar, ResearchGate and literature references in review articles. The search process is further

described in the supplementary material. Without claiming completeness.

Note: (n.a.) not applicable or not available.

Note: (*) The author(s) used the same technique but different counting algorithms. Therefore, in Figure 1, only the first of these publications were

considered.

Note: (+) personal communication.
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An important and increasingly used approach within AI is deep learn-

ing, a class of machine learning algorithms that uses multiple layers of

a neural network to progressively extract higher-level features from

the raw input data. Neural networks are algorithms that can be trained

to detect certain signals, for example, images. Most commonly applied

to analysing visual imagery, a convolutional neural network (CNN) is

employed as a class of deep neural networks that basically represents

an input–output mapping. When combined with video-based coun-

ters, it can be a powerful tool to detect more than honey bees flying

in and out of their hives.

The CNN converts raw sensory data on the input side (e.g., a pic-

ture) into a classification or keywording (e.g., a text description of the

object shown in the picture). The input data are entered into the net-

work, where a series of intermediate layers in the network subse-

quently extract increasingly abstract ‘features’ of the image. A feature

is an attribute that the network ‘learns’ from the data (Figure 7).

Based on such algorithms, Marstaller, Tausch, and Stock (2019)

and Tausch et al. (2020) presented a visual monitoring system to detect

the flight activity and background mortality of honey bee hives.

An advantage of using deep learning algorithms in visual bee coun-

ters is the ability to extract features from image data other than honey

bees alone. As demonstrated by Babic, Pilipovic, Risojevic, and

Mirjanic (2016), Yang et al. (2018) and Yang and Collins (2019), deep

learning can be utilised to differentiate between pollen and nonpollen

foragers to detect corbicular pollen carriers. By utilising regional data

on flowering periods from possible bee-attractive food plants, correla-

tions of pollen colour could indirectly indicate food availability in the

flight radius and season of observation. This could provide valuable

input for developing policies that support diverse and continuous food

supply in rural and agricultural landscapes. Ideally, these AI-based coun-

ters could be embedded in monitoring programs or WSNs to evaluate

such policies (Ratnayake, Dyer, & Dorin, 2021).

Moreover, it is also possible to detect Varroa-infested bees when

a phoretic mite is attached to the bee body (Bjerge et al., 2019;

Schurischuster, Remeseiro, Radeva, & Kampel, 2018). For instance,

Bjerge et al. (2019) developed a so-called Infestation Level Estimator

algorithm to analyse image data by counting the number of bees and

estimating the positions of Varroa mites found. It seems only logical to

implement feature extraction to detect all genera of bees, such as drones,

queens and workers, as well as other insects that possibly threaten hives,

such as the small hive beetle Aethina tumida or the Asian hornet Vespa

velutina (reviewed in Abou-Shaara & Staron, 2019).

Another possibility to utilise deep learning to detect Varroa mites

is object detection. Bilik et al. (2021) implemented YOLO (you only

look once) and SSD (single shot detector) object detectors in a real-

time computer vision-based honey bee inspection system. This system

can be used as an online monitoring tool where video or photo data

are analysed. Finally, nonscientific use by beekeepers to quickly

screen their apiary or monitoring area for current Varroa prevalence

could be enabled and may benefit future treatment strategies. By

applying generic counters with such features, technological advances

could ultimately be used for nationwide health monitoring, in which

food availability and parasitation levels can be remotely tracked and,

through rapid intervention, situations could be improved.

In addition, deep learning techniques are used for automated pol-

len detection when combined with multispectral imaging flow cyto-

metry (Dunker et al., 2021). This is a very promising development in

the field of palynology, as it requires less effort and expertise to per-

form a reliable pollen analysis. Combined with a bee counter and pol-

len trap, monitoring of food resources for pollinators at the landscape

scale could be established to measure the impact of steps to improve

bee nutrition as well as to monitor pollinator health.

3 | COUNTER VALIDATION METHODS

A prerequisite and very important step in developing a bee counter is

validation. It is necessary to assemble the appropriate apparatus that

does not interfere with bee behaviour and to use components that are

inexpensive, durable and functional to maintain a stand-alone continuous

monitoring field device. Without validation, the device may be recoding

incoming and outgoing numbers of bees with an unknown precision.

F IGURE 7 Convolution and pooling layers act as feature extractors from the input image, while fully connected layers act as a classifier.
Because the input image is a bee, the target probability is 1 for the bee class and 0 for the other three classes
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A bee counter that is used for scientific purposes needs to be vali-

dated by applying standard methods. This would make it possible to

compare the performance of different types of counters and foster

the development of the best technology. Of the counters presented

in Table 1, 58% did not indicate a validation method, which was

criticised by Rickli et al. (1989). They found that, without validation,

neither the devices nor the data generated could be compared. Of the

papers that stated a method, manual counting of bees on video or in

front of the hive was the most common (75%). The remaining studies

used specific methods.

This lack of standardisation clearly indicates that there is an

urgent need for methods that are easy to apply and comparable

among the different types of counters. In this section, the two most

promising approaches are described, that is, visual observation and

the robbers test. Moreover, the user should be aware of the counter's

principle precision and have a means to monitor the current precision

of counters in operation. This would correspond to checking the pre-

cision of a laboratory balance, which can easily be gauged by using

calibration weights. While this routine significantly reduces the oppor-

tunity for problems to remain undetected, most balances these days

have additional self-check systems of various levels of sophistication

that provide some degree of confidence that the system is operating

correctly. This should also be implemented in bee counter systems, as

realised by Struye et al. (1994) and Bromenshenk et al. (2015).

3.1 | Visual observation

Manual counting of bees to compare the flight activity with the num-

bers provided by the counting device seems reasonable to be the first

step in evaluating a counter's performance. Counting the entire traffic

of one flight day of a full-sized honey bee colony would be impossible

for a human observer when carried out manually, but with the help of

the video technique, this task is partly solvable. However, it still

requires an operator that has to align both datasets appropriately.

Manual evaluation of video footage to determine counting preci-

sion requires a standardised approach. Jiang et al. (2016) suggested

the following equations to calculate the percentage error (PE) in mea-

suring incoming and outgoing bees. The actual number

(AN) represents the number of bees assessed visually, and the coun-

ted number (CN) defines the bees counted by the device:

PEin ¼ ANin�CNin

ANin

� �
�100 ð1Þ

and

PEout ¼ ANout�CNout

ANout

� �
�100 ð2Þ

The average percentage error (AvgPE) of the incoming and outgoing

precision was defined as

AvgPEin ¼
P

PEin

Trialtotal
ð3Þ

and

AvgPEout ¼
P

PEout

Trialtotal
ð4Þ

Note that Trialtotal represents the total number of test trial observa-

tions during the experimental validation period.

Bermig et al. (2020) suggest using colonies of 5,000–10,000 bees

to obtain flight traffic a human observer can handle. Moreover, they

suggest evaluating 3-min videos at a 0.3 playing speed (slow motion)

to capture all movements appropriately.

The foraging conditions at the apiary are an important factor

when manually assessing bee flight. Favourable conditions with tem-

peratures above 14�C (Clarke & Robert, 2018) and mass flowering

food sources are on the higher end of the scale, providing solid large

flight traffic. However, Jiang et al. (2016) highlight that lower temper-

atures are suitable to cover the lower range of flight traffic. Including

both scenarios and detecting a possible gradient in the precision of

the counter is equally important.

Possible limitations of this method include its impracticability to

capture periods of very high traffic. Tu et al. (2016) reported that it

was impossible for human observers to count bees on the flight board

because of the vast number of bees and as a result of various layers

of incoming and outgoing bees. Even with second-by-second resolved

pictures from a video, counting bees accurately is not possible (Chiron

et al., 2013). Moreover, behavioural traits such as short-term flights

from newly assigned hive bees, aggregating bees at the hive entrance

because of higher temperatures, or any other behaviour that inter-

feres with a clear vision of the entrance could bias the count

(Danka & Beaman, 2007; Souza Cunha et al., 2020). These challenges

also indicate that it is important to clearly define what we mean by

‘flight activity’ detected by counters. It is actually the number of bees

leaving and entering the hive, but it does not necessarily reflect all of

the foraging activity.

Nevertheless, manual counting is suitable for achieving a certain

degree of ‘ground truth’. At least for a level of flight activity that can

be handled by a human observer, considering that precision tends to

decrease with traffic (Jiang et al., 2016). This is important in terms of

setting a minimum level of comparability.

3.2 | Robbers test

In contrast to the manual validation of bee traffic, Struye et al. (1994)

were the first to introduce a simple but solid validation method man-

aged without human participation called the ‘robbers test’.
In this method, the counter is placed under an empty box with a

food source attracting honey bees to encourage them to ‘rob’ the

box. Bees have to access the food by entering and leaving through

ODEMER 11



the counter. At the end of the day, the sum of in and outgoing bees

has to be zero, as bees tend to fly home after the temperature drops

lower and daylight is reduced. Any deviation from zero is considered a

benchmark of the precision of the device.

This can be outlined as the first standardised approach to mea-

sure the precision of a bee counter, independent of a human observer.

Apart from Bermig et al. (2020), no one had applied this test, probably

because of the lack of visibility, as it was merely published in the pro-

ceedings of a conference (ICPPR; Struye, 1999).

Bermig et al. (2020) suggest using more standardised condi-

tions such as a tunnel tent instead of free-ranging foragers to limit

access to the counter to one single colony and limit the risk that

robbing spreads to weaker colonies at the apiary. This makes it pos-

sible to select a gradient of colony strengths, as different authors

noted that most counters lose precision with increasing traffic

(Jiang et al., 2016; Struye et al., 1994). However, a limitation of the

tunnel is that the flight traffic may not be as intense as with free-

flying bees.

Taking this into account, future research should focus on the

development of a robust validation method to make the performance

of a bee counter transparent and reproducible. The robbers test has

the potential to become such a standard method. Bermig et al. (2020)

and Struye et al. (1994) calculated their counter's total percentage

error (PEtotal) with the following equations:

CNdiff ¼CNin�CNout ð5Þ

For the CNdiff, it was chosen to subtract the total number of incoming

bees (CNin) from the total number of outgoing bees (CNout). Usually,

one assumes the other way would be more appropriate to measure

how many bees remained outside the hive after a flight day. However,

in robbers tests, traffic is first generated by incoming bees and not

vice versa. Note that CN is the counted number of either incoming or

outgoing bees (see 3.1).

PEtotal ¼ 100
CNin

� �
�CNdiff ð6Þ

where PEtotal >0 means that x% of incoming bees remained in the box

and suggests checking the box after each flight day for dead bees

inside the box. These bees should be added to CNout as a correction.

PEtotal <0 means that y% more bees flew out than came in, which is

not possible and indicates inaccuracy of the counter. PEtotal = 0 would

be 100% precision or 0% error of the device.

4 | DATA INTERPRETATION

Rickli et al. (1989) and Struye (1999) were the first to specify indices

related to how data from bee counters can be used to provide evi-

dence for the health and vitality status of a honey bee colony, later

complemented by Ngo et al. (2019). Like the validation of the

counters, such indices are very important in terms of the stand-

ardisation and comparability of the created dataset. Moreover, these

indices contain clearly specified terms that allow for interpretation

and visualisation of the data.

As a basic feature, a bee counter should ideally record incoming

and outgoing bees 24 hr a day. Although no flight activity is expected

before sunrise and after sunset, activity may be detected at the hive

entrance during events such as fanning because of hot temperatures

and should be recorded. Therefore, the time resolution should be as

high as possible to cover the slightest possible fluctuation that may

represent an unnatural flight behaviour indicating internal or external

interference. A 1 min interval has proven to be sufficient for that pur-

pose (Bermig et al., 2020).

If we take a pesticide spray scenario as an example, it would make

sense to compare flight data from a treated and untreated area where

bees were foraging before, during, and after the spray application

(event) as indicators for (sublethal) effects. Sublethal effects may

involve, for example, delayed return or departure of bees to neigh-

bouring colonies. To do so, extracting timeframes with cumulative

flight counts (C) from incoming and outgoing bees as a function of the

hour (hr) can be resolved with the following equations:

Cin hrð Þ¼
X59

0
Cin minð Þ ðiÞ

and

Cout hrð Þ¼
X59

0
Cout minð Þ ðiiÞ

This can be condensed to cumulative flight counts per day (d) if the

event may not need such a high resolution to be displayed using

Equations (iii) and (iv):

Cin dð Þ¼
X23

0
Cin hrð Þ ðiiiÞ

and

Cout dð Þ¼
X23

0
Cout hrð Þ ðivÞ

These indices can be applied to compare events of significant change

in flight behaviour such as swarming or pesticide exposure by feeding

(Ngo et al., 2019; Struye et al., 1994). Moreover, it may be of higher

interest to examine incoming (i.e., returning) bees when events tend

to affect foragers on their trip outside of the hive in terms of homing

success. Examination of outgoing bees may be more relevant when

internal exposure is expected as the source of the event.

To quantify the total daily loss (L) of a honey bee colony,

Equation (v) can be used to determine the total number of bees that

did not return to the hive at the end of the day. This measure has a
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more informative value to judge striking events such as forager loss

because of a spray application or rotary mowers used on a blooming

clover harvest, for instance.

L dð Þ¼Cout dð Þ�Cin dð Þ ðvÞ

The same index was used by Bortolotti et al. (2003) to measure the

effects of the neonicotinoid imidacloprid on the homing success of

bees. In general, flight traffic hinges on internal factors such as the

size, composition and health status of a colony, among others (Bermig

et al., 2020; Clarke & Robert, 2018). These factors can vary signifi-

cantly among different colonies. To avoid such bias, Struye (1999) and

Ngo et al. (2019) suggested utilising a normalised or relative loss rate

(LR) to better categorise the increase or decline of forager bees per

time, independent of colony factors. With Equation (vi), the daily loss

can be expressed as a ratio of the cumulative outgoing flight counts in

per cent (%):

LR dð Þ¼ Cout dð Þ�Cin dð Þ
Cout dð Þ

� �
�100 ðviÞ

Furthermore, the accumulated loss of foragers (Lacc) that had not ret-

urned to the hive during N days can be calculated by Equation (vii):

Lacc Nð Þ¼
XN

1
L dð Þ ðviiÞ

The accumulated loss rate (LRacc) represents the percentage loss of

bees during N days and can be calculated by Equation (viii):

LRacc Nð Þ¼
XN

1
LR dð Þ ðviiiÞ

Indices (vi) and (vii) are particularly useful to reveal external influences

on bees' flight behaviour for both short-term and long-term periods

(Ngo et al., 2019; Struye, 1999). For future work with electronic cou-

nting devices, the above-introduced indices can help interpret data

and are critical to create comparable and standardised results as scien-

tific output.

5 | CONCLUSIONS AND PERSPECTIVE

Since the first invention of an electronic bee counter, the research

field has developed slowly. For a long time, sensor-based systems

dominated the sector. The strength of sensors lies in their robustness

and a rather simple design. However, there is still no commercial

model available that can generate reliable scientific data. In the last

decade, promising approaches have been made by using enhanced

video-based systems to record flight activity utilising deep learning

and artificial intelligence to disentangle the complex flight behaviour

of honey bee superorganisms (Figure 1). We can observe trends in

addition to recording incoming and outgoing bees. With the increased

complexity and capabilities of the technique, it is possible to record

many details, rendering sensor-based systems inferior. One example is

automatic food source recognition to identify the pollen loads of

returning foragers. Another detail that sensor-based counters cannot

register is the presence of parasites attached to the bees' bodies, as in

the use of an image recognition algorithm to observe the degree of

infestation with Varroa mites (Cecchi, Spinsante, Terenzi, &

Orcioni, 2020). In a future scenario, mites could be detected at the

hive entrance, and statistics on the infestation rate could be made

available by a web interface for neighbouring beekeepers. As an ulti-

mate approach to fight V. destructor without chemicals, the coordi-

nates of the mites could be detected, and a laser could be used to kill

them (Chazette et al., 2016).

There is promising evidence that the implementation of video-

based systems could be successful. The recent developments of com-

puter vision and deep learning enable monitoring of biodiversity in a

fully autonomous and noninvasive way for whole seasons, which is

not limited to honey bees (Høye et al., 2021; Ratnayake et al., 2021).

Such an instrument can also enhance the processing of samples in the

laboratory, as automated imaging can provide a new way of identify-

ing and counting specimens to measure the abundance of different

bee pollinators. This was impressively demonstrated by Høye

et al. (2021) with examples of sensors and devices relevant to the field

of entomology. They provide evidence of how deep learning tools can

easily convert big data streams into ecological information. This trend

is currently commercialised with products to remotely monitor bee

health for everyday beekeepers. Weather conditions, hive weight,

brood temperature and flight data are recommended for monitoring.

Although some techniques are well-engineered, the market is not

transparent because of the lack of standards and without provision of

counter precision, data may be useless, at least for scientific use.

This issue is also apparent in the current scientific literature. The

majority of the reviewed articles did not provide any information on

the validity of their bee counters. As a counter represents a precision

tool similar to a laboratory balance, it is not enough to simply state

that it counts incoming and outgoing bees. It is mandatory for cor-

rect data interpretation to understand the range of precision the

device operates at. If the daily loss of forager bees accumulates to

an unrealistic number suggesting that the hive would be empty after

a week, it is questionable if such data can be trusted. By providing a

PE after validation with a standard test method, the data are far

more comparable and the user can judge it more easily. Therefore,

there is an urgent need to define a common standard in counter

validation. The advances in method development noted earlier in this

review could form the basis for future validation concepts.

Once a device is validated, it is equally important to enable proper

interpretation of the flight data. If counters are used to measure the

ecotoxicological significance of plant protection products on bees'

flight behaviour and ultimately on colony development, comparing

daily incoming and outgoing bees from treated and untreated colonies

may not provide enough resolution to detect sublethal effects. By

utilising a normalised LR, however, the temporal resolution can easily

be adapted to hourly or even smaller intervals independent of colony
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factors. Such ‘indices’ were first compiled by Rickli et al. (1989),

Struye (1999) and Ngo et al. (2019) and slightly refined in this review.

The so-called background mortality of a honey bee colony

indicates bees that die naturally outside the hive at a certain time

(e.g., daily, weekly, in spring, in the summer hole, etc.) (Dukas, 2008).

With a counter that has a stable and low error rate, even during

periods of intense flight activity, it would be possible to reliably deter-

mine this mortality. However, as seen from the work presented here,

standards for determining the error rate must be established to make

such an approach feasible.

It is not yet possible to collect this kind of data accurately, partic-

ularly over longer time intervals. However, this would benefit environ-

mental risk assessment for higher-tier studies. Obtaining accurate

information on bee mortality rates induced solely by the substance of

interest would be a valuable endpoint. In addition, the effects of a

spray application could be measured in real time while the farmer is

operating the field sprayer.

Identifying whether a certain loss of foragers poses a signifi-

cant risk to the colony, for example, in terms of its winter mortal-

ity, would be difficult, if not impossible, to determine empirically

but can be checked using simulation models that are sufficiently

realistic (i.e., to simultaneously reproduce a range of observed fea-

tures of a colony and its response to different environmental con-

ditions). BEEHAVE is such a model (Becher et al., 2014). It has

been thoroughly examined by the European Food Safety Authority

(EFSA, 2015) and is considered suitable for simulating unstressed

or reference colonies (EFSA, 2021). The EFSA has a model under

development that will be based on the ALMaSS (Animal, Landscape

and Man Simulation System) framework of representing agricultural

landscapes and their management, including considerably more

detail than BEEHAVE, with modules for diseases and pesticide

effects (EFSA, 2016).

Considering the most recent development in bee counters, prom-

ising progress has been made, indicating a major leap toward solving

the issues and shortcomings in the current decade. Connected hives

and beekeeping networks will provide a tremendous amount of data,

including bee traffic, weight change, weather conditions and overall

colony development, providing indicators for bee and colony health.

Compiling the current knowledge of state-of-the-art electronic cou-

nting devices should enable future work to be more focused to over-

come the outlined issues.
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